Challenge in Understanding	Example of Student Difficulty	How Might a Linear Measurement Context Help?
 A Fraction is a Number A fraction represents an amount, not just pieces (such as 2 of 3 pieces of a pizza) or a situation (such as 2 of 3 shirts are red). 	• When asked to put the fraction 2/3 on a number line, a student said "you can't put it on a number line, because it's two pieces out of three pieces, it's not a number." Or "2/3 is not a number, it's two numbers." [*]	 Linear measurement may help students shift from thinking "how many pieces" (counting) to thinking "how much" or "how long" (relative size). Students can partition a whole themselves and check whether the parts are equal; it is relatively easy to compare whether 2 lengths are equal, and to notice the relative size of part/whole.
 Fractions Can Be Greater than One May be difficult for students who have a strong image of a fraction as a <i>piece of something</i>. 	 "You can't have ⁶/₅ because there's only ⁵/₅ in a whole." 	• When students measure an object that is longer than 1 foot (meter, etc.), it may be relatively easy to visualize something as a whole plus an additional fractional part and understand the meaning of fractions greater than 1.
 Fractions Can Be Partitioned A whole can be divided into smaller and smaller equal parts. The same fractional quantity can be represented by different fractions. 	 Difficulty seeing how to divide a whole into <i>equal</i> parts. Difficulty seeing that ¹/₂ is equal to ²/₄, ³/₆, ⁴/₈, ⁵/₁₀ and so on. 	• A number line (or ruler) may make it easy to see that the same point can be described by different fractions.
 What the Denominator Means Different units (such as ¹/₃ and ¹/₅) are different sizes. The more units a whole is partitioned into the smaller each one is. 	• Students add 1/3 + 1/5 and get 2/8, without realizing they are adding two different things (thirds and fifths) sort of like adding apples and hammers.	 Compared to fractional parts of area (which can be rearranged in many ways), length may provide a clear image of what is 1/3m, 1/2m, 10/11m, etc., and their relative size. Linear measurement may help provide a strong image that the unit that fits in 3 times is longer than the

 ¹/_n fits exactly <i>n</i> times into the whole. 	 Students may think "1/5 is bigger than 1/4 because 5 is bigger than 4." Difficulty seeing that 1/3 fits in the whole 3 times, 1/4 fits in the whole 4 times. Has trouble seeing that 3/3, 4/4 etc. equal 1. 	one that fits in 4 times, that 1/6 is half the length of 1/3, etc.
Knowing What is the Whole Constructing the whole when given a fractional part. Keeping track of the whole. 	 Difficulty making the whole when you give them a fractional part, e.g.: "This paper is 2/3; show me the whole." Sees that the magnitude of a fraction depends on the magnitude of the whole (e.g., half of a small cookie is not the same as half of a large cookie) Confusion about whether the two drawings below together represent 3/8 of a pie or 3/16 of a pie. 	• Using a standard measurement unit may be clearer, more familiar, and more stable than an ad hoc unit (such as pie pieces), making it easier to keep track of the whole.

The Lesson Study Group at Mills College

Fraction Size

- Understands that fraction size is determined by the (multiplicative) relationship between numerator and denominator – not just by the numerator, not just by the denominator, and not by the *difference* between numerator and denominator.
- Sees non-unit fraction as an accumulation of unit fractions. [A unit fraction has a numerator of 1; a non-unit fraction has a numerator other than 1.]
- May think 4/9 is bigger than 3/4 because 4 is bigger than 3 (comparing numerators), or 4/9 is bigger than 3/4 because 9 is bigger than 4 (comparing denominators), or 3/5 is the same size as 5/7 because the difference between the top and the bottom in both fractions is 2.
- Sees that equivalent fractions have the same multiplicative relationship between numerator and denominator. In ²/₄, 4/₈, 3/₆, etc. denominator is two times numerator.
- Sees 5/8 is made up of five 1/8's or 5 times 1/8, that 9/8 is made up of 9 eighths or 9 times 1/8, etc.

- Length measurement may transfer to the number line more easily than some other models, so that students see the relative size of fractions. A familiar standard measurement unit (a meter, foot, etc.) may make it easy to see 1/3 as a length that goes in 3 times, 1/4 as a length that goes in 4 times, etc.
- When students think about a turtle who travels in a straight line 1/5 mile a day for 4 days, they may easily develop an image of 4/5 as four fifths—as 1/5 repeated four times along a number line.

